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Abstract A Markov chain Monte Carlo (MCMC)

implemented Bayesian method has been developed to

detect quantitative trait loci (QTL) effects and Q 9 E

interaction effects. However, the MCMC algorithm is time

consuming due to repeated samplings of QTL parameters.

We developed an expectation and maximization (EM)

algorithm as an alternative method for detecting QTL and

Q 9 E interaction. Simulation studies and real data anal-

ysis showed that the EM algorithm produced comparable

result as the Bayesian method, but with a speed many

magnitudes faster than the MCMC algorithm. We used the

EM algorithm to analyze a well known barley dataset

produced by the North American Barley Genome Mapping

Project. The dataset contained eight quantitative traits

collected from 150 doubled-haploid (DH) lines evaluated

in multiple environments. Each line was genotyped for 495

polymorphic markers. The result showed that all eight traits

exhibited QTL main effects and Q 9 E interaction effects.

On average, the main effects and Q 9 E interaction effects

contributed 34.56 and 16.23% of the total phenotypic

variance, respectively. Furthermore, we found that whether

or not a locus shows Q 9 E interaction does not depend on

the presence of main effect.

Introduction

The mixed model methodology (Henderson 1975) offers an

efficient tool for detecting Q 9 E interaction for complex

quantitative traits with the same set of genotypes measured

in multiple environments (Piepho 2000). Under the mixed

model framework, we can treat some effects as fixed and

others as random, depending on the interpretations of the

effects and mathematical convenience of the analysis.

Piepho (2000) chose quantitative trait loci (QTL) effects as

fixed and environmental effects as random. However, the

author used a single marker or interval mapping approach

to analyzing the QTL effect and Q 9 E interaction. The

entire experiment requires multiple analyses with one locus

at a time. When multiple QTL are included in a single

model, a variable selection scheme may be used because

the number of markers can be larger than the sample size.

Bayesian shrinkage analysis can handle multiple QTL in a

convenient way so that variable selection can be avoided

(Xu 2003). In the Bayesian shrinkage analysis, a model can

handle many more QTL effects than that can be handled by

the traditional maximum likelihood method, even if the

number of effects is larger than the sample size. The ori-

ginal Bayesian shrinkage method proposed by Xu (2003)

has been applied to QTL mapping within one environment.

The method has been extended to mapping Q 9 E inter-

action effects by Chen et al. (2010). The method was

implemented via the Markov Chain Monte Carlo (MCMC)

algorithm. For any particular marker, the mean of the

marker effects across multiple environments represented

the main effect and the variance of the marker effects

across multiple environments represented the Q 9 E inter-

action effect.

The MCMC-implemented Bayesian method generally

provides the highest accuracy of QTL effect estimation, but
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is computationally very demanding, especially for large

models coupled with large sample sizes. To improve the

computational efficiency, Xu (2010) proposed a fast

expectation and maximization (EM) algorithm to estimate

the posterior modes of variance parameters while the

regression coefficients were treated as missing values. This

algorithm can also capitalize on valuable information on

the basis of prior distribution and is always faster than the

MCMC-implemented shrinkage analysis. In this study, we

extended the EM algorithm of Xu (2010) to multiple

environments for detecting QTL main effects and

Q 9 E interaction effects.

The doubled-haploid barley data published by Hayes

et al. (1993) have been analyzed by numerous investigators

(Attari et al. 1998; Fang et al. 2008; Han et al. 1995, 1997;

Romagosa et al. 1996; Xu and Hu 2010). They are good

sample data for Q 9 E interactions because the DH lines

were evaluated in multiple environments. The DH popu-

lation was derived from the cross of ‘‘Steptoe’’ and

‘‘Morex’’, where ‘‘Steptoe’’ is the dominant feed barley in

the Northwestern US and ‘‘Morex’’ is the six-row Spring

US malting quality standard. There were four agronomic

traits (Grain yield, Lodging, Heading date and Height) and

four malting quality traits (Grain protein, Alpha amylase,

Diastatic power and Malt extract) measured in various

numbers of environments. A total of 495 markers were

genotyped for 150 DH lines with an average marker

interval of 2.23 cM. This dataset was previously analyzed

by Hayes et al. (1993) using 123 markers with an average

marker density of 9.6 cM. The authors took a least squares

approach under the interval mapping scheme for detection

of QTL and Q 9 E interaction effects (Hayes et al. 1993).

However, simultaneous analysis of multiple loci under

multiple environments has not been conducted for this

barley population. The result of multiple QTL and

Q 9 E effect analysis should be more informative and can

be used to direct further experiments and molecular

breeding in barley.

Methods

Hierarchical model

The method is developed based on a doubled diploid (DH)

design. Let m be the number of environments and n be the

number of DH lines. Define yj ¼ yj1 yj2 � � � yjm

� �T
as an

m� 1 vector for the observed phenotypic values of line j

measured from the m environments. The linear model for yj is

yj ¼ bþ
Xq

k¼1

Zjkck þ nj ð1Þ

where b is an m� 1 vector of intercepts, Zjk is a

numerically coded genotypic indicator variable for line j

at locus k, for k ¼ 1; . . .; q, where q is the number of

markers, ck ¼ ck1 ck2 � � � ckm½ �T is an m 9 1 vector for the

regression coefficients of the phenotypic values on the

numerically coded genotype. Note that ck is a vector and

Zjk is a scalar. To model the Q 9 E interaction effect, we

assume that ck follows a multivariate normal distribution

given below:

p ckjak;r
2
k

� �
¼ N ckj1mak; Im�mr2

k

� �
ð2Þ

where 1m is a unity vector with dimension m, Im�m is an

m 9 m identity matrix, ak is the mean value representing

the QTL main effect and r2
k is the variance of m environ-

ment-specific QTL effects represented by vector ck. This

variance represents the Q 9 E interaction for locus k. This

type of model with a further modeling on ck is called the

hierarchical model. In the hierarchical model, the first

moment parameter ak is the main effect and the second

moment parameter r2
k represents the degree of Q 9 E

interaction, called the Q 9 E interaction effect in this

report. In the multivariate model shown in Eq. 1, the

residual error vector nj ¼ nj1 nj2 � � � njm

� �T
is assumed to be

multivariate normal denoted by nj�N 0;Hð Þ, where H is

an m� m variance–covariance matrix. For simplicity, we

chose H ¼ Im�mr2 as the residual variance–covariance

structure, called homogenous residual error variance. Other

structures are described in the discussion section.

Prior distribution

We often have enough information from the data to esti-

mate b and r2, and thus a uniform prior can be assigned to

each of them. The QTL main effect ak and the Q 9 E

interaction effect r2
k are the parameters of interest. The

main effect for the kth QTL is assigned the following

normal prior,

p akju2
k

� �
¼ N akj0;u2

k

� �
ð3Þ

where u2
k is the prior variance. Following Xu (2010) and Yi

and Xu (2008), we consider two classes of priors for u2
k .

The first class is the scaled inverse Chi-square distribution

assigned to u2
k , which is

p u2
k jsu;xu

� �
¼ Inv� v2 u2

k jsu;xu
� �

ð4Þ

A special case of this prior is ðsu;xuÞ ¼ ð�2; 0Þ, which

is equivalent to the uniform prior p /2
k

� �
¼ 1. The other

special case is ðsu;xuÞ ¼ ð0; 0Þ, which represents the

Jeffrey’s prior, i.e., p u2
k

� �
¼ 1=u2

k . The second class of the

priors is the exponential distribution,
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p u2
k jku

� �
¼ Expon u2

k j
k2

u

2

 !

¼
k2

u

2
exp �

k2
u

2
u2

k

 !

ð5Þ

where k2
u is the regularization parameter. This exponential

prior will result in the Lasso estimation of QTL main

effects (Tibshirani 1996), and thus is called the Lasso

parameter.

In a similar manner, two different priors are assigned to

variance r2
k (representing the Q 9 E interaction). The first

prior is the scaled inverse Chi-square prior distribution,

p r2
k jsr;xr

� �
¼ Inv� v2 r2

k jsr;xr
� �

ð6Þ

The second prior is the exponential prior,

p r2
k jkr

� �
¼ Expon r2

k j
k2

r

2

� �
¼ k2

r

2
exp � k2

r

2
r2

k

� �
ð7Þ

This exponential prior will lead to the Lasso estimations of

environment-specific QTL effects. Note that ðs;xÞ and k2

are hyper-parameters set up by the investigators. For sim-

plicity, we chose the same hyper-parameters for both u2
k

and r2
k .

Joint posterior

In the Bayesian shrinkage analysis, the inferences of the

parameters are made based on the marginal posterior dis-

tributions. The MCMC algorithm can obtain the posterior

information of the parameters sampled from the posterior

distributions. However, the EM algorithm obtains the

posterior modes of the parameters by maximizing the joint

density of the posterior. This posterior mode estimation is

achieved via an iterative algorithm in lieu of a posterior

expectation. The posterior distribution is a combination of

the prior and the likelihood. Let h ¼ fb;r2; ak; ck;u
2
k ; r

2
kg;

8k ¼ 1; . . .; q, be the parameter vector. The joint posterior

distribution of the parameters is expressed as

p hjyð Þ ¼ constant� p yjhð Þp hð Þ ð8Þ

where

p yjhð Þ ¼
Yn

j¼1

p yjjb; c; r2
� �

ð9Þ

is the likelihood and

pðhÞ ¼
Yq

k¼1

p ckjak; r
2
k

� �
p akju2

k

� �
p r2

k jhr
� �

p u2
k jhu

� �
ð10Þ

is the prior distribution, where hu ¼ su;xu
� �

and hr ¼
sr;xrð Þ for the scaled inverse Chi-square hyper-

parameters, and hu ¼ k2
u and hr ¼ k2

r for the exponential

hyper-parameters. The density (likelihood) for data yj is

p yjjb; c; r2
� �

¼ N yj bþ
Xq

k¼1

Zjkck; r
2

�����

 !

ð11Þ

The posterior mode estimates of all parameters are

obtained by maximizing the log posterior distribution with

any quantity involving ck and ak replaced by the posterior

expectation of that quantity.

EM algorithm

Derivation of the EM algorithm is straightforward and thus

not provided in full length. In this section, we mainly focus

on the EM steps by treating ck and ak as missing values.

We first give the expectation steps and then provide the

maximization steps with brief derivation for some key

elements.

Expectation steps

The expectation steps involve calculating the posterior

expectations and posterior variances of missing values ck

and ak. The conditional posterior for the environment-

specific QTL effect ck is normal with mean and variance

specified below. The expectation is

E ckj � � �ð Þ ¼ 1

r2
k

Im�mþ Im�m

Xn

j¼1

Z2
jk

" #�1
1

r2
k

1makþ
Xn

j¼1

Zjky�j

" #

ð12Þ

where

y�j ¼ yj � b�
Xq

k0 6¼k

Zjk0ck0 ð13Þ

are the adjusted phenotypic values of line j by removing all

other effects except the effects of locus k. The conditional

posterior variance of ck is

var ckj � � �ð Þ ¼ 1

r2
k

Im�m þ Im�m

Xn

j¼1

Z2
jk

" #�1

ð14Þ

The identity matrix Im�m occurring in the above equation

indicates that the expression is an m 9 m matrix, rather

than a scalar. Similarly, the conditional posterior for ak is

normal with mean and variance given by

E akj � � �ð Þ ¼ 1

u2
k

þ m

r2
k

	 
�1
m

r2
k

Xm

t¼1

cjt

" #

ð15Þ

and

var akj � � �ð Þ ¼ 1

u2
k

þ m

r2
k

	 
�1

ð16Þ
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respectively. The conditional posterior means of ck and ak

are called the shrinkage estimates. Derivation of the

shrinkage estimates can be found in Xu (2007).

Maximization steps

First, we describe the derivation for the posterior mode of

r2
k . The target function for maximization is the expected

complete-data log likelihood function. For the scaled

inverse Chi-square prior, the part of the expected complete-

data log likelihood function relevant to NE is

L r2
k jsr;xr

� �
¼ � sr þ 2þ m

2
ln r2

k

� �

� 1

2r2
k

E ck � akð ÞT ck � akð Þ
h i

þ xr

n o

ð17Þ

Setting o
or2

k

L r2
k jsr;xr

� �
¼ 0 and solving for r2

k , we obtain

r2
k ¼

E ck � akð ÞT ck � akð Þ
h i

þ xr

sr þ 2þ m
ð18Þ

where

E ck � akð ÞT ck � akð Þ
h i

¼ E ck � akð ÞTE ck � akð Þ
þ tr var ckj � � �ð Þ½ � ð19Þ

and

E ck � akð Þ ¼ E ckj � � �ð Þ � E akj � � �ð Þ ð20Þ

For the exponential (Lasso) prior, the part of the expected

complete-data log likelihood function relevant to r2
k is

L r2
k jkr

� �
¼ �m

2
ln r2

k

� �
�

E ck � akð ÞT ck � akð Þ
h i

2r2
k

� 1

2
k2

rr
2
k

ð21Þ

Setting o
or2

k

L r2
k jkr

� �
¼ 0 and solving for r2

k leads to

r2
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4k2

rE ck � akð ÞT ck � akð Þ
h ir

� m

2k2
r

ð22Þ

The variance component u2
k is derived using similar

approach by maximizing the expected log posterior

relevant to u2
k . Under the scaled inverse Chi-square prior,

the final expression of the posterior mode is

u2
k ¼

E a2
k

� �
þ xu

su þ 2þ 1
¼ E2 akj � � �ð Þ þ var akj � � �ð Þ þ xu

su þ 2þ 1
ð23Þ

For the Lasso prior, we have two solutions with the

positive one being

u2
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k2

uE a2
k

� �q
� 1

2k2
u

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k2

u E2 akj � � �ð Þ þ var akj � � �ð Þ½ �
q

� 1

2k2
u

ð24Þ

Given the updated random effects, let us deal with the fixed

effect b and the residual error variance r2. The expected

complete-data log posterior relevant to b and r2 is

L b; r2
� �

¼ �mn

2
ln r2

� 1

2r2

Xn

j¼1

E yj � b� Zjc
� �T

yj � b� Zjc
� �h i

ð25Þ

Setting o
ob L b; r2ð Þ ¼ 0 and solving for b yields

b ¼ 1

n

Xn

j¼1

yj �
Xq

k¼1

ZjkE ckj � � �ð Þ
" #

ð26Þ

Finally, we set o
or2 L b; r2ð Þ ¼ 0, solve for r2 and obtain the

following solution

r2 ¼ 1

mn

Xn

j¼1

E yj � b� Zjc
� �T

yj � b� Zjc
� �h i

ð27Þ

where the expectation of the quadratic form, denoted by

EðSSjÞ, has the following expression,

E SSj

� �
¼ yj � b
� �T

yj � b�
Xq

k¼1

Zjk Eckj � � �ð Þ
" #

ð28Þ

The E-steps and M-steps are iterated repeatedly until a

certain criterion of convergence is reached. At the final

iteration, the estimated QTL effect for locus k is denoted by

âk ¼ E akj � � �ð Þ and the corresponding variance for the

estimate is S2
k ¼ varðakj � � �Þ. Similarly, the estimated

environmental specific QTL effect vector is denoted by

ĉk ¼ Eðckj � � �Þ and its variance–covariance matrix is

denoted by Vk ¼ varðckj � � �Þ.

Hypothesis tests

There are two test statistics for each locus. The main effect

QTL is tested under null hypothesis H0 : ak ¼ 0. The test

statistic is the F-like statistics denoted by

Fk ¼
â2

k

S2
k

ð29Þ

The Q 9 E interaction effect for locus k is tested

under null hypothesis H0 : r2
k ¼ 0. Directly testing, this

hypothesis is tedious because one has to reanalyze the data
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under various reduced models. We reformulated the

null hypothesis as H0 : ck ¼ 1ak, which is an alternative

way of testing r2
k ¼ 0. The reason for this is that if all

elements of vector ck are equal, we would expect that

ck1 ¼ ck2 ¼ � � � ¼ ckm ¼ ak, and thus Q 9 E interaction is

absent. We used the Wald statistic (Wald 1943) to test

Q 9 E interaction,

Wk ¼ ĉk � 1âkð ÞTV�1
k ĉk � 1âkð Þ ð30Þ

Under the null model of H0 : ak ¼ 0; Fk will

approximately follow an F-distribution with degrees of

freedom 1 and n, where n is the sample size. When the

sample size is sufficiently large, Fk will be approximated

by a Chi-square distribution with one degree of freedom.

Under the null model of H0 : ck ¼ 1ak and assuming that

n is relatively large, Wk will approximately follow a Chi-

square distribution with m degrees of freedom. The critical

values of these test statistics for significance declaration

can be found from the percentiles of the corresponding

central distributions. Alternatively, permutation tests

(Churchill and Doerge 1994) may be used to draw

empirical thresholds for the test statistics. In our data

analysis, we used v2
1;1�0:05 ¼ 3:84 as the critical value for

testing the main QTL effect and v2
m;1�0:05as the critical

value for testing Q 9 E interaction. We discussed the

reason why we did not use the permutation test in the final

section of the manuscript.

Analysis of variances

Although the proportions of trait variance explained by

each QTL and each Q 9 E interaction may be calculated

using the sizes of estimated effects, it is very difficult to

compute the overall contributions from all main effect

QTL and from all Q 9 E interactions due to linkage of

multiple QTL. We now use an analysis of variances

(ANOVA) approach to partitioning the total phenotypic

variance into variance due to all main effect QTL and

variance due to all Q 9 E interactions. The ANOVA

approach was suggested by one of the reviewers. The

ANOVA can be accomplished with different analyses

under three different models.

1. Full model:

The full model is described as

yj ¼ bþ
Xq

k¼1

Zjkck þ nj ð31Þ

where nj�N 0; Im�mr2
n

� 
is the pure residual errors. Note

that r2
n is previously denoted by r2. This model facilitates

an estimate of the environmental variance using the

approach described early.

2. Main effect model:

The model assumes that there is no Q 9 E interaction

and thus it can be formulated as

yj ¼ bþ
Xq

k¼1

Zjk1mak þ /j ð32Þ

where 1m is an m 9 1 unity vector and /j�N 0; Im�mr2
/

� 

is the residual error under the main effect model. Note that

both Zjk and ak are scalars but the model is an m 9 1

vector, which explains why a unity vector is inserted there.

This model facilitates an estimate of r2
/.

3. Null model:

The null model assumes that there is neither QTL main

effect nor Q 9 E interaction effect for the entire genome.

The model only contains an intercept and a residual,

yj ¼ bþ fj ð33Þ

where fj�N 0; Im�mr2
f

� 
is the residual error under the

null model.

We now have three models with three residual error

variances. Under the three models, we obtain three esti-

mated variances, r̂2
n; r̂2

u and r̂2
f . In terms of genetic vari-

ance components, the three residual variances are expected

to be

Eðr̂2
nÞ ¼ r2

E

Eðr̂2
/Þ ¼ r2

E þ r2
Q�E

Eðr̂2
fÞ ¼ r2

E þ r2
Q�E þ r2

Q

ð34Þ

where r2
E is the environmental variance, r2

Q is the overall

variance of main effects and r2
Q�E is the overall variance of

Q 9 E interactions. Let r2
P ¼ r2

E þ r2
Q�E þ r2

Q be the total

phenotypic variance. We are now able to estimate the

proportions of phenotypic variance contributed by QTL

main effects and Q 9 E interaction effects. The two

proportions are

ĤQ ¼
r̂2

Q

r̂2
P

¼
r̂2

f � r̂2
/

r̂2
f

ð35Þ

and

ĤQ�E ¼
r̂2

Q�E

r̂2
P

¼
r̂2

/ � r̂2
n

r̂2
f

ð36Þ

Of course, we can report the so-called broad sense

heritability using

Ĥ ¼ ĤQ þ ĤQ�E ¼
r̂2

Q þ r̂2
Q�E

r̂2
P

¼
r̂2

f � r̂2
n

r̂2
f

ð37Þ

We have now concluded the methodology development.
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Applications

Simulated data analysis

We simulated a single large chromosome of 1,120 cM in

length covered by 225 codominant markers evenly spaced

with 5 cM per marker interval. The simulated population

contained n = 150 doubled diploid lines evaluated in 16

environments. The genotype indicator variable for line j at

locus k was defined as Zjk ¼ 1;�1f g, corresponding to the

two genotypes A1A1 and A2A2. A total of 10 QTL were

simulated with the sizes of the effects and genome loca-

tions given in Table 1 and depicted in Fig. 1 for the main

effects and Fig. 2 for the Q 9 E interaction effects. The

environmental error variance was set at r2 ¼ 50. The

simulation experiment was replicated 20 times and the

average results were reported. In the analysis using the EM

algorithm, we chose three different priors: (1) ðs;xÞ ¼
ð�2; 0Þ corresponding to the uniform prior (denoted by

EM-Uniform), (2) ðs;xÞ ¼ ð0; 0Þ representing the Jeffrey’s

prior (denoted by EM-Jeffreys) and (3) the Lasso prior

(denoted by EM-Lasso) with k2
Q ¼ 1:9446 and k2

Q�E ¼
4:9852. The Lasso parameters were estimated using the

empirical formulas k2
Q ¼ 1

q

Pq
k¼1 r2

k

� �1
2

for the main

effects and k2
Q�E ¼ 1

q

Pq
k¼1 u2

k

� �1
2

for the Q 9 E interac-

tion effects. The empirical method of choosing the Lasso

parameter was proposed by Xu (2010). The same simulated

data sets were also analyzed using the MCMC-imple-

mented Bayesian method (Chen et al. 2010) for compari-

son. In the MCMC analysis, we used the uniform prior for

the variance components, i.e., ðs;xÞ ¼ ð�2; 0Þ. The length

of the Markov chain contained 60,000 sweeps. The first

30,000 sweeps were deleted as they were considered as

observations of the burn-in period. The Markov chain was

then thinned at a rate of 1 out of 30. The empirical posterior

sample contained 1,000 observations for the post-MCMC

analysis. The MCMC experiment for each data analysis

was repeated a few times using different seeds to make sure

that the chains had converged to the stationary distribu-

tions. To test the significance of parameters of interest, we

carried out a Bayesian permutation analysis proposed by

Che and Xu (2010) to generate the null distributions of the

QTL effects, from which an empirical threshold value was

obtained for each QTL.

The true main effects and Q 9 E interaction effects

along with their estimates are summarized in Table 1.

Figure 1 depicts the true and estimated effects for QTL and

Fig. 2 illustrates the true and estimated Q 9 E interaction

effects. In terms of closeness of the estimated effects to the

true effects, it appeared that the uniform prior of the EM

algorithm (EM-Uniform) and MCMC algorithm (also using

the uniform prior) produced better estimates than other

methods while the MCMC algorithm was superior over the

EM algorithm (EM-Uniform). In addition, the EM-Uni-

form and the MCMC algorithm are capable of separating

closely linked QTL and detecting QTL only with main

effects or only with Q 9 E interaction effects. For exam-

ple, the second and third QTL had main effects in opposite

directions and possessed no Q 9 E interaction effects.

They were estimated very well by the two algorithms. The

sixth QTL possessed Q 9 E interaction effect with no

main effect. The seventh QTL had main effect only. Both

the sixth and the seventh QTL were estimated well by the

two algorithms. The Lasso prior produced estimated effects

at the corresponding loci simulated, but the values were

smaller than the true values, meaning strong shrinkage. The

Jeffrey’s prior had no power to detect the main effects, but

was able to detect Q 9 E interaction effects. The failure of

Jeffreys’ prior for detecting the main effect QTL may be

due to the strong shrinkage of the Jeffreys’ prior compared

to the uniform prior. Nevertheless, all algorithms provided

accurate estimates for b and r2, which can be found in

Table S1 of the Supplemental material.

To validate the analysis of variances for partitioning the

total phenotypic variance into variance due to main effect

QTL and variance due to Q 9 E interaction, we also

simulated the data under various reduced models to

determine the true HQ and HQ9E. Although the genetic

variances contributed by each QTL and Q 9 E interaction

can be determined given the true effects, it is hard to

determine the overall contributions due to linkage. There-

fore, we used a simulation experiment to determine the

overall contribution from each source. We simulated two

extremely large populations with sample size 10,000 for

each population. In the first population, the model was

gfull
j ¼ bþ

Xq

k¼1

Zjkck ð38Þ

From this population, we calculated the variance of gfull
j

across the 10,000 lines. This variance is var gfull
j

� 
¼

r2
Q þ r2

Q�E. The second population was simulated under

gmain
j ¼ bþ

Xq

k¼1

Zjkak ð39Þ

which provided var gmain
j

� 
¼ r2

Q. The difference between

var gfull
j

� 
and var gmain

j

� 
gives the true value of r2

Q�E.

Once the true r2
Q; r2

Q�E and r2
E ¼ 50 were determined, we

obtained r2
P, and thus were able to calculate the proportions

of the trait variance contributed by the overall Q and

Q 9 E interactions. The true proportions and their esti-

mates from the analysis of variances are shown in Table 2.
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We can see that the estimated HQ and HQ9E were very

close to the true proportions.

Our simulation experiments showed that the EM algo-

rithm with the uniform prior and the MCMC-implemented

Bayesian method (uniform prior) are optimal in

Q 9 E detection. The latter had a slight advantage over the

former, but the advantage was barely noticeable. The great

advantage of the EM algorithm is the fast computational

speed. For each dataset, the EM algorithm required an

average of 3.4 min of CPU time while the MCMC algo-

rithm took 330.5 min on a desktop with an Inter Core

i7-2600 3.4-GHz processor and 4.00 GB RAM (see the last

row of Table 2). Therefore, the EM algorithm developed

here can be a suitable alternative method for detecting

Q 9 E interactions. The time consuming MCMC algo-

rithm still has its advantages over the EM algorithm

regarding the ability to generate an empirical posterior

distribution (shape) for each estimated QTL effect while

the EM algorithm only provides the posterior mode and

posterior variance for each QTL.

Real data analysis

We applied the new EM algorithm to analyze the doubled-

haploid population published by Hayes et al. (1993).

The genotype and phenotype data were retrieved from the

following two websites: http://www.genenetwork.org/

genotypes/SXM.geno and http://wheat.pw.usda.gov/ggpages/

SxM/phenotypes.html.

For the article to be self-contained, we briefly summa-

rized the main features of the data. This dataset consisted

of 150 doubled haploids (DH) derived from the cross of

two spring barley varieties, Steptoe and Morex, designated

as S 9 M. The traits consisted of three agronomic traits

(Grain yield, Heading date and Height) and five malting

quality traits (Lodging, Grain protein, Alpha amylase,

Diastatic power and Malt extract). As an example, we only

presented in detail the result of a malting quality trait

named Lodging. This trait was measured in six environ-

ment and, therefore, m = 6 and n = 150. Other traits were

also analyzed but results are not presented in detail as we

did for Lodging (see Table 4 for all results). The total

number of markers was 495 distributed along seven chro-

mosomes of the barley genome. Because of the small

sample size, we could not analyze all the 495 markers

simultaneously in a single model due to high multi-col-

linearity. Therefore, we selected one marker in every 5 cM,

leaving a total of 225 markers for the entire genome. If a

selected genome location did not overlap with a marker,

genotypes of the 150 lines were imputed from linked

markers using the multipoint method (Jiang and Zeng

1997). The genotype of each marker was coded as ?1 for

the Steptoe allele and -1 for the Morex allele. All the 225T
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putative loci were evaluated simultaneously in a single

model.

We used the EM-Uniform algorithm and the MCMC

algorithm to analyze this trait. The estimated QTL main

effects are depicted in Fig. 3, where the top panel gives the

result of the EM-Uniform and the bottom panel shows the

result of the MCMC algorithm. The two methods generated

similar results in most chromosome regions except a few

places where the MCMC algorithm had extra peaks that

were missing from the EM-Uniform algorithm. The major

difference comes from the last chromosome where the EM-

Uniform algorithm showed one peak but the MCMC

algorithm gave two peaks (one overlaps with the one

generated from the EM-Uniform algorithm). Another dif-

ference between the two methods is that the MCMC

algorithm appears to have stronger shrinkage for large QTL

but weaker shrinkage for smaller QTL than the EM-Uni-

form algorithm. The estimated Q 9 E interaction effects

are depicted in Fig. 4, where the top panel shows the result

of the EM-Uniform algorithm and the bottom panel shows

that of the MCMC algorithm. Again, the two algorithms

generated much the same result. The only difference is that

the MCMC algorithm appeared to have spread each

Q 9 E into a few smaller ones in the neighborhood of the

major peak for some unknown reasons.

Result of analysis of variances for the trait Lodging is

presented in Table 3. The two methods produced similar

results regarding the estimated HQ and HQ9E. On average,

ĤQ � 0:21 and ĤQ�E � 0:31 leading to an estimated broad

sense heritability of Ĥ � 0:52. The computational times for

the EM-Uniform and MCMC algorithm were 5.20 and

289.05 min, respectively. Again, the advantage of the EM

algorithm over the MCMC algorithm is well supported.

The F and W test statistics for the main effects and

Q 9 E interaction effects for this trait (Lodging) are pre-

sented in Fig. 4. The critical value for main effect detection

was v2
1;0:95 ¼ 3:84 (one degree of freedom) and the corre-

sponding critical value for Q 9 E detection was v2
6;0:95 ¼

12:59 (six degrees of freedom because there were six

environments). Using these critical values, we detected

NQ = 9 main effect QTL and NQ9E = 10 interaction

effects. Among these loci, NQ\Q�E ¼ 4 of them showed

both Q and Q 9 E, and NQ[Q�E ¼ 9þ 10� 4 ¼ 15 was

the total number of loci with either Q or Q 9 E or both.

Among the total number of loci detected, NQ=NQ[Q�E ¼
0:60 had main effects and NQ�E=NQ[Q�E ¼ 0:67 had

Q 9 E interaction effects. Among the total number of loci

evaluated NMarker ¼ 225ð Þ; NQ=NMarker ¼ 0:040 had main

effects and NQ�E=NMarker ¼ 0:044 had Q 9 E effects.
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Fig. 1 True and estimated main effects of QTL plotted against

genome location in the simulated data analysis. The red triangles

indicate the true effects, the needles in blue show the estimated effects

and error bars in black represent the standard errors. The top panel

shows the result using the EM-Uniform algorithm and the bottom

panel shows the result from the MCMC-implemented Bayesian

method
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The overall proportion of the phenotypic variance

contributed by main effects was HQ = 0.21 and the cor-

responding proportion explained by Q 9 E was HQ9E =

0.32. Due to linkage, if two neighboring markers were both

significant and in the same directions, we only counted as

one. This would correct any upward bias regarding the

estimated number of QTL. If a locus had a QTL effect but

no Q 9 E interaction, but a locus 5 cM away from this

locus showed Q 9 E interaction, we claimed that the Q and

Q 9 E were in the same locus.

Finally, we used the EM-Uniform algorithm to analyze

the remaining seven traits. Three of the seven traits were

replicated in 16 environments and four of them were

replicated in nine environments. The results of all trait

analysis using the EM-Uniform algorithm (including

Lodging measured in six environments) are summarized in

Table 4. The number of QTL and Q 9 E interactions for

the remaining seven traits was calculated using the same

rules as we did for the Lodging analysis. For all the eight

traits, on average, the proportion of trait variance explained

by Q was HQ = 0.346 and the corresponding proportion

explained by Q 9 E was HQ9E = 0.162. The conclusion

was that the main effect QTL played a more important role

than the Q 9 E interaction effects. Another important

discovery from Table 4 was that the number of loci

showing both Q and Q 9 E was very small with an average

of 2.75 across all eight traits. Majority of the loci showed

either Q or Q 9 E but not both. Table 4 only provides a

brief summary of the real data analysis. Detailed infor-

mation regarding the actual estimated effects and locations

of the significant loci are presented in Figures S1–S4 of the

Supplemental material.

Discussion

We developed a hierarchical model for detection of Q 9 E

interactions implemented via the EM algorithm. We also

EM-Uniform
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Fig. 2 True and estimated Q 3 E interaction effects plotted against

genome location in the simulated data analysis. The red triangles

indicate the true effects, the needles in blue show the estimated effects

and error bars in black represent the standard errors. The top panel

shows the result using the EM-Uniform algorithm and the bottom

panel shows the result from the MCMC-implemented Bayesian

method

Table 2 True and estimated proportions of phenotypic variance

explained by QTL for the simulated data analysis

True

value

EM-Uniform MCMC

Main HQð Þ 0.3546 0.3511 (±0.0064) 0.3534 (±0.0076)

Q 9 E HQ�Eð Þ 0.4543 0.4682 (±0.0085) 0.4523 (±0.0090)

Computing timea – 3.40 (±0.5000) 330.50 (±0.7631)

a The last row gives the computing time in minute for the two

algorithms and the standard errors are included in parentheses
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compared the EM algorithm with the Bayesian method

(Chen et al. 2010) for detecting Q 9 E interactions.

Results of the two methods are similar. The major advan-

tage of the EM algorithm is the fast speed of computation.

The Bayesian method, although slow in computation, still

shows its advantage because it provides the posterior dis-

tribution (shape) for a QTL effect. This allows investiga-

tors to draw credibility interval for each estimated QTL

effect. The EM algorithm, however, only gives the pos-

terior mode and posterior variance for each QTL effect.

Therefore, the EM algorithm is only a suitable alternative

for the Bayesian method.

In the original data analysis of Hayes et al. (1993), the

authors also reported Q 9 E interactions using the interval

mapping approach (Haley and Knott 1992; Knapp et al.

1990) by analyzing the data separately with one environ-

ment at a time. They evaluated the differences of QTL

effects among the environments. The original method is

considered an ad hoc method. We examined the Q 9 E

interaction effects detected from the ad hoc method and

compared the results with ours. We found that all effects

detected by Hayes et al. (1993) were also detected with our

method. In addition, we detected more Q 9 E interaction

effects (see Figures S1–S4 of the Supplemental material for

the results of our analysis using the EM algorithm). This

implied that our method may have higher power than the

ad hoc method.

The hierarchical model presented is considered the

simplest model of this kind. The reason is that we assumed

nj�Nð0; Im�mr2Þ, which has the simplest residual variance

structure. The simplest model seems to work well, as

demonstrated in the barley data analysis. Further

improvement may be done by incorporating more com-

plicated residual variance structures. We did not do that in

this study because (1) the result would be difficult to

present and (2) it would be hard to partition the total var-

iance into variance due to QTL main effects and variance

due to Q 9 E interactions. In the future, we expect to see

more experiments with traits measured in multiple envi-

ronments. In any particular real data analysis, it is worthy

to explore complicated error structures. The most advanced

variance structure is the factor-analytic structure as given

by Chen et al. (2010), in which the m environments are

considered to be controlled by a few underlying factors.

Extension of our model to factor-analytic structure is

possible, although not a simple task. Two other structures

are easy to incorporate, which are (1) the heterogeneous

variance structure and (2) the fully unstructured variance

matrix. The general covariance structure is nj�Nð0;HÞ
where H is an m 9 m matrix. For the heterogeneous
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Fig. 3 Estimated main effects plotted against genome location for

trait ‘‘Lodging’’ of the barley data analysis. The top panel shows the

result of the EM-Uniform algorithm and the bottom panel shows the

result of the MCMC algorithm. The seven chromosomes are separated

by the vertical reference lines. The barcode like ticks on the x-axis

represent the locations of the 495 markers
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residual variance structure, H ¼ D ¼ diag d1; . . .; dmf g,
where dt is the variance for the tth environment. For the

fully unstructured variance matrix, H ¼ R is a positive

definite symmetric matrix. To incorporate these variance

structures, we need to replace Im�mr2 occurred in any place

during the derivation of the simple structure by H. In

addition, the maximization step for r2 is replaced by the

maximization step for D using

D ¼ 1

n

Xn

j¼1

diag E yj � b� Zjc
� �

yj � b� Zjc
� �T

h in o
ð40Þ

For the fully unstructured residual variance matrix, we

need to replace the maximization step for r2 by the

maximization step for R,

R ¼ 1

n

Xn

j¼1

E yj � b� Zjc
� �

yj � b� Zjc
� �T

h i
ð41Þ

Note that the transposition operator (T) occurs in the

residual vector of the right, different from Eq. (27) in which
T occurred in the left. Chen et al. (2010) found that the D

structure can have significant improvement over the simple

structure, but the R structure may have only a marginal

improvement. Again, we did not use D because we want to

partition H into HQ and HQ9E, which is not straightforward

in situations other than the simple structure.

The hierarchical model involves hyper-parameters

ðs;xÞ for the scaled inverse Chi-square prior and k2 for the

Lasso prior. For simplicity, we examined ðs;xÞ ¼ ð�2; 0Þ
and ðs;xÞ ¼ ð0; 0Þ for the scaled inverse Chi-square prior.

The Lasso prior k2 was drawn from the data using the

empirical formula of Xu (2010). In real data analysis, these

hyper-parameters may be determined by cross-validation

analysis. The set of hype-parameters that generate the

minimum squared prediction error (PE) should be selected

and the results from that set of hyper-parameters should be

reported.

Significance test is another issue in Q 9 E detection.

We used the percentiles of central Chi-square distributions
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Fig. 4 Estimated Q 9 E interaction effects plotted against genome

location for trait ‘‘Lodging’’ of the barley data analysis. The top panel

shows the result of the EM-Uniform algorithm and the bottom panel

shows the result of the MCMC algorithm. The seven chromosomes

are separated by the vertical reference lines. The barcode like ticks on

the x-axis represent the locations of the 495 markers

Table 3 Estimated proportions of phenotypic variance explained by

QTL for trait Lodging of the barley data analysis

EM-Uniform MCMC

Main HQð Þ 0.2105 0.2297

Q 9 E HQ�Eð Þ 0.3283 0.3071

Computing timea 5.20 289.05

a The last row gives the computing time in minute for the two

algorithms
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as the critical values. Permutation tests (Churchill and

Doerge 1994) may be used to generate empirical critical

values. We hesitated using permutation tests because they

were originally proposed for interval mapping. For multi-

ple QTL analysis, its suitability is questionable. We believe

that the multiple QTL mapping may have already consid-

ered the multiple tests, since the test for each marker is

conditioned on all other markers. Anyway, the fact that we

did not use permutation tests does not mean that other

people should not use the permutation tests to draw the

critical values. Assume that permutation tests can be jus-

tified for multiple QTL mapping, they can be easily

implemented with the proposed EM algorithm because of

the fast speed. The fact that our EM algorithm is developed

based on the hierarchical model (a hybrid between

Bayesian and frequentist approaches), the asymptotic the-

ory derived based on the frequentist approach may not

apply to the hierarchical model. As a result, the test sta-

tistics may not follow the corresponding central distribu-

tions under the null models. Therefore, the permutation test

for drawing the critical values of the test statistics may be

an alternative way to decide the significance of a detected

QTL effect. Permutation tests for multiple QTL mapping

should be thoroughly investigated before they can be

comfortably applied to this kind of multiple QTL models.

From genomic selection point of view, significance tests

may not be required because all markers should be applied

to predict the whole genome effect for each line, regardless

how small their effects are (Meuwissen et al. 2001).

Recently, genomic selection has become a hot topic for

animal and plant breeding (Goddard and Hayes 2007,

2009; Goddard et al. 2010; Hayes et al. 2009; Heffner et al.

2009; Jannink et al. 2010; Meuwissen et al. 2001; Nielsen

et al. 2009; Schaeffer 2006; Sonesson and Meuwissen

2009; Xu 2003; Xu and Hu 2010; Zhang et al. 2011).

Genomic selection using multiple environmental data

should be a useful subject for further investigation.
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